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Abstract. We prove equidistribution of two pairs of statistics on boxed plane parti-

tions: (volume, trace) and (corner-hook volume, number of corners). The proof relies on

different 3d visualizations of the corresponding non-intersecting path systems. In partic-

ular, we obtain a new visual proof for a volume generating function of plane partitions.

We also introduce a new statistic called the cohook area on ordinary partitions, and

prove that it is equidistributed with the area of partitions.

1. Introduction

Equidistributed statistics in combinatorics can be quite nontrivial and interesting. A

remarkable example is MacMahon’s theorem on equidistribution of the number of inver-

sions and the major statistic on permutations [Mac16a], which has a conceptual bijective

proof due to Foata [Foa68], see also [Sta11, Prop. 1.4.6].

In this paper, we study an equidistribution result of a similar kind but for statistics on

plane partitions, which is a rather unusual instance compared to permutations.

1.1. Plane partitions. A plane partition is a matrix π = (πi,j)i,j≥1 of nonnegative inte-

gers with finitely many nonzero entries such that

πi,j ≥ πi+1,j, πi,j ≥ πi,j+1, for all i, j ≥ 1.

Plane partition can be identified with its diagram

D(π) := {(i, j, k) : 1 ≤ k ≤ πi,j},

which can be visually represented as a pile of 3d boxes, see Figure 1. We define the set

of corners of π as follows:

Cor(π) := {(i, j, k) ∈ D(π) : (i+ 1, j, k), (i, j + 1, k) ̸∈ D(π)} .

There are two natural statistics on plane partitions:

the volume |π| :=
∑
i,j

πi,j = |D(π)| and the trace tr(π) :=
∑
i

πi,i.
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There are also two other statistics on plane partitions introduced in [Yel21a, Yel21b]:

the corner-hook volume |π|ch :=
∑

(i,j,k)∈Cor(π)

(i+ j − 1) and cor(π) := |Cor(π)|.

The set of plane partitions whose diagram lies inside the box [a] × [b] × [c] is denoted

by PP(a, b, c), where we use the notation [n] := {1, . . . , n}.
We prove that the bivariate statistics (volume, trace) and (corner-hook volume, number

of corners) are jointly equidistributed over boxed plane partitions.

Theorem 1.1 (Equidistribution of (volume, trace) and (corner-hook volume, corners)).

We have: ∑
π∈PP(a,b,c)

q|π|ttr(π) =
∑

π∈PP(a,b,c)

q|π|chtcor(π).

Equivalently, for all n, k we have:

|{π ∈ PP(a, b, c) : |π| = n, tr(π) = k}| = |{π ∈ PP(a, b, c) : |π|ch = n, cor(π) = k}|.

A weaker (as an infinite sum when c → ∞) version of this theorem was established in

[Yel21b] by an indirect argument via maps to matrices. In this paper, we show that a

stronger result holds for a finite boxed version, by a direct combinatorial argument.

The following volume-trace generating function for plane partitions was obtained by

Stanley [Sta73]: ∑
π∈PP(a,b,∞)

q|π|ttr(π) =
a∏

i=1

b∏
j=1

(1− tqi+j−1)−1,

which generalizes the volume generating function (for t = 1) by MacMahon [Mac16b].

Note also that for t = 1 and a finite boxed version there is a nice product formula for the

corresponding generating function∑
π∈PP(a,b,c)

q|π| =
a∏

i=1

b∏
j=1

c∏
k=1

1− qi+j+k−1

1− qi+j+k−2
.

In the same series of works, MacMahon also conjectured volume generating functions

for d-dimensional partitions which naturally generalize plane partitions in higher dimen-

sions. Later, in [ABMM67] his conjecture was shown to be incorrect for all d ≥ 3. In

[Yel21a, Yel21b] the second author introduced the corner-hook volume on plane partitions

(named ‘up-hook volume’ there up to a diagram rotation) and showed that it gives product

formulas as in the volume generating function. We generalized this result to d-dimenisonal

partitions in [AY23], and it turns out that the corner-hook volume is the correct statistic

lying behind MacMahon’s generating functions for general d. Theorem 1.1 shows that the

two statistics are equidistributed for d = 2, which does not happen in higher dimensions.

In fact, we show a direct combinatorial proof of a more general identity with weights

relating two known families of symmetric functions (indexed by ordinary partitions):
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Schur polynomials sλ and dual stable Grothedieck polynomials gλ which can be viewed

as K-theoretic extensions of Schur functions, see § 2.3, 2.4 for definitions and context. It

is obtained by using the Lindström–Gessel–Viennot lemma [Lin73, GV89] and interpreting

plane partitions as non-intersecting path systems in two different ways on the same picture,

as in Figure 2. We then apply it to double enumeration of plane partitions.

The proofs use ideas developed by us in [AY22].

1.2. Ordinary partitions. As a byproduct of our approach, we also introduce a new

statistic | · |c for ordinary partitions, which we call the cohook area and show that it is

equidistributed with the usual area | · | of partitions.

Theorem 1.2. We have: ∑
λ∈P(a,b)

q|λ|td(λ) =
∑

λ∈P(a,b)

q|λ|ctcor(λ),

where sum runs over all partitions λ, d(λ) is the length of the Durfee square of λ, and

cor(λ) is the number of corners of λ.

2. Preliminaries

2.1. Partitions. A partition is a sequence λ = (λ1, . . . , λℓ) of positive integers λ1 ≥ . . . ≥
λℓ, where ℓ(λ) = ℓ is the length of λ. Denote |λ| =

∑
i λi the size or area of λ. Every

partition λ can be represented as the Young diagram D(λ) := {(i, j) : i ∈ [1, ℓ], j ∈
[1, λi], (i, j) ∈ N2}. By λ′ we denote the conjugate partition of λ, i.e. transpose of its

diagram. For a cell (i, j) ∈ D(λ) the values λi−i+1 and λ′
j−j+1 are called the arm and leg

lengths of (i, j). Together, they constitute (i, j) hook length hλ(i, j) := (λi−i)+(λ′
j−j)+1.

A Durfee square side d(λ) of partition λ is the largest k for which λk ≥ k. The

Frobenius notation (a1, . . . , ak|b1 . . . , bk) of a partition λ with Durfee square side equal

k := d(λ) expresses the partition in terms of its hooks for (i, i) ∈ D(λ), namely the arm

ai = |{(i, i), . . . , (i, λi)}| and the leg bi = |{(i, i), . . . , (λ′
i, i)}|. Clearly, a1 > . . . > ak ≥ 1

and b1 > . . . > bk ≥ 1 and
∑k

i=1 ai + bi − 1 = |λ| is the partition area.

The set of partitions whose Young diagram lies inside the box [a] × [b] is denoted by

P(a, b).

2.2. Plane partitions. A plane partition is a matrix π = (πi,j)i,j≥1 of nonnegative inte-

gers with finitely many nonzero entries such that

πi,j ≥ πi+1,j, πi,j ≥ πi,j+1, for all i, j ≥ 1.

Every plane partition π can be represented as the diagram

D(π) := {(i, j, k) : 1 ≤ k ≤ πi,j},

which can be visually represented as a pile of 3d boxes, see Figure 1.
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The shape of π is given by sh(π) = {(i, j) : πi,j > 0}. By the side shape sh1(π) we

denote the partition given by its first row (π1,i).

An element (i, j, k) ∈ D(π) is called a corner, if

(i+ 1, j, k) ̸∈ D(π) and (i, j + 1, k) ̸∈ D(π).

If additionally (i, j, k + 1) ̸∈ D(π) we call it top corner. The set of all corners is denoted

by Cor(π) and its number cor(π) = |Cor(π)|. Alternatively,

Cor(π) = {(i, j, k) : max(πi+1,j, πi,j+1) < k ≤ πi,j}.

The volume |π| and the corner-hook volume |π|ch of π are defined as follows:

|π| =
∑
i,j≥1

πi,j, |π|ch =
∑

(i,j,k)∈Cor(π)

(i+ j − 1).

The trace of π is tr(π) :=
∑

i≥1 πi,i, i.e. the sum of diagonal entries.

The set of plane partitions whose diagram lies inside the box [a] × [b] × [c] is denoted

by PP(a, b, c) We regard plane partition π ∈ PP(a, b, c) as a pile of boxes.

For example, consider the plane partition π of shape sh(π) = (3, 3, 2, 1) and the side

shape sh1(π) = (3, 3, 1) given by

π =


3 3 1

3 2 1

3 2 0

1 0 0

 ∈ PP(4, 3, 3),(1)

which is displayed in Figure 1. It has tr(π) = 5, |π| = 21 and |π|ch = 3+5+4+5+5+5 = 27,

where

Cor(π) = {(1, 2, 3), (2, 3, 1), (3, 1, 3), (3, 2, 2), (3, 2, 1), (4, 1, 1)}, cor(π) = 6.

Remark 1. Definitions of corners follows conventions in [AY23]. It is equivalent to the

notion of ‘descents’ in [Yel21a, Yel21b].

2.3. Schur polynomials. We denote xn = (x1, . . . , xn) (and similarly for other sets of

variables). The Schur polynomials {sλ} can be defined as follows:

sλ(xn) :=
∑

π∈SPP(λ)

∏
(i,j)∈D(λ)

xπi,j

where SPP(λ) is the set of column-strict plane partitions of shape λ, i.e. filling of a

diagram D(π) with entries 1, . . . , n so that the rows are weakly decreasing and columns

are strictly decreasing. They satisfy the following determinantal formula.
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k ≤ c
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j ≤ b
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320

321

3
31

k ≤ c
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10
0

320
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31

Figure 1. The plane partition π from (1) represented as a pile of boxes.

We present it in a rotated way, so that the side shape sh1(π) = (3, 3, 1)

appears at the bottom with rows corresponding to y-direction, columns to

z-direction and height to x-direction (compared to Fig. 2). The numbers

on the right sides of boxes represent the heights πi,j.

Proposition 2.1 (Nägelsbach–Kostka or dual Jacobi–Trudi identity). For n ≥ 1 and

ℓ(λ) ≤ n we have:

sλ(xn) = det
(
eλ′

i−i+j(xn)
)
i,j∈[λ1]

,(2)

where ek(x) =
∑

i1<...<ik
xi1 · · ·xik = s(1k)(x) is the k-th elementary symmetric function.

2.4. Dual stable Grothendieck polynomials. The refined dual stable Grothendieck

polynomials {gλ(xa; zb)} in two sets of variables xa = (x1, . . . , xb) and zb = (z1, . . . , zb),

indexed by partitions λ, are defined as follows:

gλ(xa; zb) :=
∑

π: sh1(π)=λ

∑
(i,j,k)∈Cor(π)

xizj

where sum runs over plane partitions π ∈ PP(a, b, c) of side shape sh1(π) = λ ⊆ b× c.

The dual stable Grothedieck polynomials gλ(x) = gλ(x; z)|zi→1 were introduced in

[LP07] as a K-theoretic analogue of Schur functions. Their refined version g̃(x; z) =

zλg(x; z−1) was introduced in [GGL16]. They satisfy the following determinantal for-

mula, which is equivalent to the one proved in [Yel17].

Proposition 2.2. For any partition λ with λ1 ≤ a, we have:

gλ(xa; zb) = det

(
zλ′

i

∑
k≥0

ej−i+k(xa)ek(zλ′
i−1)

)
i,j∈[λ1]

.
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3. Paths enumeration

3.1. Graph construction. Let a, b, c ∈ N be fixed. Define a directed acyclic weighted

graph G with vertices on the lattice Z3 (in X, Y, Z coordinates) as follows:

• The vertices are lattice points on the plane XY (wall) and the plane XZ (floor).

• The edges {e} are of four types, for i ∈ Z:( )
floor forward edges: (i, 0, j) → (i, 0, j − 1) of weight w(e) = 1, for

j ∈ [1, b];( )
floor left edges: (i, 0, j) → (i − 1, 0, j − 1) of weight w(e) = zj, for

j ∈ [1, b];( )
wall upward edges: (i, j − 1, 0) → (i, j, 0) of weight w(e) = 1, for

j ∈ [1, a];( )
wall right edges: (i, j, 0) → (i + 1, j + 1, 0) of weight w(e) = xj, for

j ∈ [1, a].

The directions in the edge list are specified according to Figure 2 and Figure 3. We also

put c sources A = (A1, . . . , Ac) and c sinks B = (B1, . . . , Bc) for i ∈ [c]:

Ai = (i, 0, b), Bi = (i, a, 0),

i.e. each path P : Ai → Bj first ‘crawls’ on the floor and then ‘climbs’ up by the wall.

Note also that #{left steps} −#{right steps} = i− j, with an equal number of left and

right steps if i = j.

3.2. Enumerators. Define weighted path enumerator in the usual way:

w(A → B) =
∑

P :A→B

∏
e∈P

w(e)

over all paths P in the lattice from the point A to the point B with steps e given as above.

The weight of a path is a product of all edge weights. The following formula is then clear

from the construction.

Lemma 3.1. We have:

w(Ai → Bj) =
∑
k≥0

ek(zb)ej−i+k(xa).

Proof. To reach Bj starting from Ai via the path P , the latter needs to have the shift

j− i by the coordinate x. If the path P has k ≥ 0 extra left steps, then the shift becomes

j − i+ k. Let P ∩OX = C = (i, 0, i− k). Then

w(Ai → C) = ek(zb), w(C → Bi) = ej−i+k(xa).

Indeed, part of P from Ai to C requires a choice of k left steps out of a possible, similarly

from C to Bj requires j − i+ k right steps out of b available. □



ON EQUIDISTRIBUTION THEOREM FOR PLANE PARTITIONS 7

x(c)

y(a)

z(b) A1

B1
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B2

A3

B3

A4

B4

q3

q1

q1

q0

Figure 2. This picture can be observed in three ways: (a) boxed plane

partition in PP(a, b, c), with dashed lines; (b) the paths Qi : Ai → Bi,

where i-th one travels in the plane x = i, these paths define the dashed

plane partition; (c) the paths Pi : Ai → Bi, each going first by the ‘floor’

(y = 0 plane) and then by the ‘wall’ (z = 0 plane). The orange lines show

an example of volume enumeration of (a) with edges of (b).

1
xi

x

y

z

1
zi

x

y

z
A1A2A3A4

B1B2B3B4

z3

z2

x3

x4

z3

z1

x1

x3

z2

x3

1

1
x

z

y

c

a

b

A1A2A3A4

B1B2B3B4

Figure 3. (a) A part of the lattice with typical sample steps. (b) An

example of a path system for a = 4, b = 3, c = 4 with the path weights

given by w(P1) = z3z2x3x4, w(P2) = z3z1x1x3, w(P3) = z2x3, w(P4) = 1.

(c) A planar view of the graph G.
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Similarly, define the signed weighted multi-enumerators

w(A → B) :=
∑

P:N(A,B)

sgn(P )w(P)

where N(A,B) is the set of nonintersecting path systems P = (P1, . . . , Pc) from A to B

(i.e. c paths with no common vertices as in Fig. 3(b)), sgn(P ) := sgn(σ) for σ ∈ Sc if P

joins Ai with Bσ(i). Set

D(a, b, c) := det

(∑
k≥0

ek(zb)ej−i+k(xa)

)
i,j∈[c]

.

Lemma 3.2. We have:

D(a, b, c) =
∑

P∈N(A,B)

w(P)(3)

where P = (P1, . . . , Pc) with Pi : Ai → Bi.

Proof. The proof follows by applying the Lindström–Gessel–Viennot lemma [Lin73, GV89]

for the graph G, since it is in fact a planar graph. □

Lemma 3.3. We have: ∑
λ∈P(min(a,b),c)

sλ(xa)sλ(zb) =
∑

µ∈P(b,c)

gµ(xa; zb)

Proof. By Lemma 3.2, non-intersecting path systems from A to B are enumerated by the

determinant D(a, b, c). Let us enumerate these path systems in two ways.

On the one hand, let P ∈ N(A,B) be a non-intersecting path system. Let C =

(C1, . . . , Cc) be intersection points of paths Pi with OX line for i ∈ [c]. Then C split the

path system P into two path systems Pz : A → C (floor) and Px : C → B (wall). Let

Ci = (i − λ′
i, 0, 0) for some vector λ′ = (λ′

1, . . . λ
′
c). Since P ∈ N(A,B), the vector λ′ is

a partition. Iterating over C, by Proposition 2.1 we may decompose the determinant as

follows:

D(a, b, c) =
∑
C

det (w(Ai → Cj)) det (w(Ci → Bj)) =∑
λ

det
(
eλ′

i+j−i(zb)
)
det
(
eλ′

i+j−i(xa)
)
=
∑
λ

sλ(zb)sλ(xa),

where the sum runs over partitions λ with D(λ) ⊆ [min(a, b)]× [c]. Indeed, λ1 ≤ c since

there are c paths corresponding to columns of D(λ) diagram, and ℓ(λ) ≤ min(a, b) since

the terms sλ(xa)sλ(zb) vanish otherwise.

On the other hand, for each i ∈ [c], let µ′
i be the maximal index for which the path

Pi has zµ′
i
in its weight w(Pi); in other words, index of the first left edge of Pi. If there

is no such edge, we set µ′
i = 0. Since the paths are non-intersecting, µ′ = (µ′

1, . . . , µ
′
c) is
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a partition satisfying D(µ) ⊆ [b] × [c]. Indeed, it has at most c columns (as there are c

paths) and each µ′
i ≤ b by construction.

Denote by A′
i = (i − 1, 0, µ′

i − 1) the point of Pi after passing this edge for i ∈ [µ1].

Summing up over all possible A′ = (A′
1, . . . , A

′
c) (or equivalently, over µ′) and using

Proposition 2.2 we get:

D(a, b, c) =
∑
A′

det
(
zµ′

i
w(A′

i → Bj)
)

=
∑
µ′

det

(
zµ′

i

∑
k≥0

ek(zµ′
i−1)ej−i+k(xb)

)
=
∑
µ′

gµ(xa; zb).

This completes the proof. □

Remark 2. This identity was shown in [MS20] by a probabilistic argument using the

connection of dual stable Grothendieck polynomials with last passage percolation model

from [Yel20] and the Schur measure.

Remark 3. We now have a complete ‘triangle’ of formulas and relations between them

(for c → ∞):

• The RSK correspondence (see e.g. [Sta99, Ch. 7]) shows∑
ℓ(λ)≤min(a,b)

sλ(xa)sλ(zb) =
a∏

i=1

b∏
j=1

1

1− xizj

• The bijective map Φ : PP(a, b,∞) → {(ai,j)i∈[a],j∈[b] : ai,j ∈ N} (see [Yel21a,

Yel21b, AY23]) shows∑
ℓ(λ)≤b

gλ(xa; zb) =
a∏

i=1

b∏
j=1

1

1− xizj

• Lemma 3.3 directly shows∑
ℓ(λ)≤min(a,b)

sλ(xa)sλ(zb) =
∑
ℓ(λ)≤b

gλ(xa; zb).

Remark 4. Our proof can be converted to a direct bijection using ‘jeu de taquin’ like

operations on paths described in [AY22]. In particular, in [AY22] we defined the operations

{slidek}k≥0,
1 describing procedure which transforms 3d non-intersecting path system P(i) :

A → B to 3d non-intersecting path system P(i+1) : A → B. Each path P
(i)
j travels as

follows: first crawls by the floor y = 0, then climbs by the wall z = k, and then travels

on the plane x = i. Then starting from P(0) := P ∈ N(A,B) and applying consequently

slideb−1 ◦ . . . ◦ slide0 to P we can construct a new path system P′ : A → B with each P ′
i

travelling in x = i plane, with steps (0, 1, 0), (0, 0, 1) and (0, 1, 1), where the latter step

1As their definitions are somewhat technical and long, we do not reproduce them here.
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x
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B1 B2 B3

A1 A2 A3

z2
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x3

x4
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z1

x2

(a) Initial non-intersecting path system P.

x

y

z

B1 B2 B3

A1 A2 A3

z2

x3

x4z1

z2

x3

x2z1

(b) Operation slide0 applied: path Pi travels

in x = i in its tail (orange).

x

y

z

B1 B2 B3

A1 A2 A3

x4z2

x4z1

x3z2
x2z1

(c) Operation slide1 applied: floor and wall

parts of Pi are combined into path travelling

in x = i plane.

x

y

z

10

2
2

32

32

(d) The resulting plane partition.

Figure 4. From a non-intersecting path system to plane partition.

type corresponds to corners of the new plane partition, see Figure 4 (cf. [AY22, Fig. 7]).

This defines direct a weight preserving bijection between plane partitions enumerated by

corners in gλ(x; z) and non-intersecting path systems in D(a, b, c).

4. Equidistribution theorem

In this section we show implications of Section 3.

Theorem 4.1 (= Theorem 1.1). We have∑
π∈PP(a,b,c)

q|π|ttr(π) =
∑

π∈PP(a,b,c)

q|π|chtcor(π)(4)
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x

y

z Ai

Bi

Ci
λ(i)

x

y

z
Ai

Bi

Ci

Figure 5. The path Pi from Ai = (i, 0, c) to Bi = (i, b, 0) intersecting OX

at point Ci = (i− ℓi, 0, 0). (a) The Path Pi and Qi coincide under this view

angle. (b) The path Qi (orange) travels on the plane x = i and bounds

the partition λ(i) = (5, 4, 4, 2), the projection lines are displayed to see the

correspondence between the paths Pi and Qi.

Proof. We refer to the Figure 2 for visualization. In Lemma 3.3 set xi = qi, zi = tqi−1 to

obtain: ∑
λ⊆min(a,b)×c

sλ(q, q
2, . . . , qa)sλ(t, tq, . . . , tq

b−1) =
∑

λ⊆b×c

gλ(q, . . . , q
a; t, . . . , tqb−1).

On the RHS of (4) we already obtain enumeration of plane partitions by corner-hook

volume:

gλ(q, . . . , q
a; t, . . . , tqb−1) =

∑
π∈PP(a,b,c): sh1(π)=λ

∏
(i,j,k)∈Cor(π)

qj · tqi−1

=
∑

π∈PP(a,b,c): sh1(π)=λ

tcor(π)q|π|ch .

Hence, the RHS enumerates plane partitions by corners in the box PP(a, b, c).

On the LHS, we interpret each term as a non-intersecting path system P. View each

path Pi ∈ P in other way. Project path Pi : Ai → Bi to the plane x = i along the vector

(1, 1, 1) to obtain the path Qi : Ai → Bi which uses (0, 1, 0) and (0, 0, 1) steps and travels

within the plane x = i. It is easy to see (visually) that this is a bijection. See Figure 5

for a visual explanation.

The path Qi is then the boundary of some partition λ(i) ⊆ a × b (of its diagram),

drawn in the plane x = i (in French notation). Since the paths are non-intersecting,

π := (λ(1) ⊇ . . . ⊇ λ(c)) is a plane partition, where πi := λ(i) is its i-th row. This defines

a bijection between non-intersecting path systems P enumerated by D(a, b, c) and plane

partitions π ∈ PP(a, b, c).
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Let us show that the contribution of w(P) matches the required term ttr(π)q|π|. For

each i ∈ [c] write the partition λ(i) = (a1, . . . , aℓi |b1 . . . , bℓi) in Frobenius notation, where

ℓi := d(λ(i)). Then the path Pi has 2ℓi edges, and moreover, the hook (aj, bj) corresponds

to the pair of edges of Pi: floor left edge zbj and wall right edge xaj (see orange lines in

Figure 2). Thus, for each i ∈ [c] we have

w(Pi) =

ℓi∏
j=1

zbjxaj =

ℓi∏
j=1

qbj · tqaj−1 = q
∑

(aj+bj−1)tℓi = q|λ
(i)|tℓi

and consequently

w(P) =
a∏

i=1

w(Pi) = q
∑

|λ(i)| t
∑

ℓi = q|π|ttr(π),

since tr(π) =
∑c

i=1 d(λ
(i)). This completes the proof. □

As a byproduct of the above discussions we obtain the following corollaries.

Corollary 4.2 (Fixed trace generating function). For a partition λ ∈ P(min(a, b), c) we

have:

sλ(q, q
2, . . . , qa)sλ(t, tq, . . . , tq

b−1) =
∑

π∈PP(a,b,c): tr(π)=λ

q|π|ttr(π)

Corollary 4.3 (Boxed PP volume enumeration). For a partition λ ∈ P(min(a, b), c) we

have:

D(a, b, c)|xi→qi,zj→qj−1 =
∑

π∈PP(a,b,c)

q|π|

Remark 5. Notably, the latter corollary is obtained without the use of the RSK correspon-

dence. Indeed, D(a, b, c) enumerates non-intersecting paths by LGV lemma (Lemma 3.2)

and the interpretation of w(P) for P ∈ N(A,B) after specialization is direct and visual.

Remark 6. Since the volume and the corner-hook volume are equidistributed, it is natural

to ask if they also have symmetric joint distribution, i.e. whether∑
π

q|π|t|π|ch =
∑
π

q|π|cht|π|

holds. While (as we checked) this equality does not hold over all boxed plane partitions,

it seems to hold for sums over π ∈ PP(2, 2, c), which would be interesting to prove.

5. Partition corner hook area

For a partition λ, recall that |λ| = |D(λ)| is its area, d(λ) := maxλk≥k k is the size of

its Durfee square, and hλ(i, j) := (λi− i)+ (λ′
j − j)+1 denotes the hook length of the cell

(i, j). We clearly have

|λ| =
d(λ)∑
i=1

hλ(i, i).
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Denote by p(n, k) the number of partitions λ with |λ| = n and d(λ) = k and set p(n) =∑
k p(n, k) the total number of partitions of n.

Definition 5.1. Let λ be a partition. The cell (i, j) ∈ D(λ) is called a corner, if (i+1, j)

and (i, j + 1) are not in D(λ). The set of corners is denoted by Cor(λ) and its size is

cor(λ) := |Cor(λ)|. By ch(i, j) := i + j − 1 we denote a cohook length of the cell (i, j).

Define the cohook area |λ|c as follows:

|λ|c :=
∑

(i,j)∈Cor(λ)

ch(i, j).

For example, the partition λ = (21) with |λ| = 3 has two corners (1, 2) and (2, 1), and

hence, |λ|c = 2 + 2 = 4. Denote by q(n, k) the number of partitions with |λ|c = n and

cor(λ) = k and set q(n) =
∑

k q(n, k).

Since any partition λ is uniquely determined by its corners, let us introduce the corner

notation. By [a1, . . . , ak|b1, . . . , bk] we denote a partition with corners at (a1, b1), . . . , (ak, bk),

so that

a1 > . . . > ak ≥ 1 and 1 ≤ b1 < . . . < bk,

since no two corners can occupy the same row or column. For example,

λ = [4, 2, 1|3, 5, 6] =
(1,6)

(2,5)

(4,3)

= (6, 4, 1|4, 3, 2),

with |λ|c = 19 and |λ| = 17.

Theorem 5.2. For any n, k ≥ 1 we have:

p(n, k) = q(n, k),

i.e. the paired partition statistics (| · |, d(·)) and (| · |c, cor(·)) are equidistributed.

Proof. Let λ = (a1, . . . , ak|b1, . . . , bk) be a partition of n written in Frobenious notation.

Consider the following map

Φ : λ = (a1, . . . , ak|b1, . . . , bk) 7→ [a1, . . . , ak|bk, . . . , b1] =: µ

from Frobenius to corner notation. Then we have |λ| =
∑

ai+bi−1 =
∑

ai+bn+1−i−1 =

|µ|c. This shows that Φ is in fact a bijection

Φ : {λ : |λ| = n, d(λ) = k} → {λ : |λ|c = n, cor(λ) = k}

which implies the claim. □

The following corollary is immediate.
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Corollary 5.3. For any n ≥ 1, we have: p(n) = q(n).

Analogous to Theorem 1.1, we present the boxed version.

Theorem 5.4 (= Theorem 1.2). We have the following equidistribution of paired statistics

(| · |, d(·)) and (| · |c, cor(·)) within the box [m]× [n]:∑
λ∈P(m,n)

q|λ|td(λ) =
∑

λ∈P(m,n)

q|λ|ctcor(λ).

Proof. We are enough to verify that D(Φ(λ)) ⊆ [m] × [n] whenever D(λ) ⊆ [m] × [n].

Apply the map Φ to such λ written in Frobenius notation as (a1, . . . , ak|b1, . . . , bk). Then
{ai} is a strictly decreasing subsequence of [n], and similarly {bi} of [m]. Let µ := Φ(λ) =

[a1, . . . , ak|bk, . . . , b1] in corner notation, then each ai ∈ [n] and bi ∈ [m] ensuring that

D(µ) ⊆ [m]× [n]. The reverse direction is similar. □
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