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Abstract. We show that the Levi-Civita tensors are semistable in the sense of Geometric

Invariant Theory, which is equivalent to an analogue of the Alon–Tarsi conjecture on Latin

squares. The proof uses the connection of Tao’s slice rank with semistable tensors. We also

show an application to an asymptotic saturation-type version of Rota’s basis conjecture.

1. Introduction

The Levi-Civita symbol ε is defined for i1, . . . , in ∈ [n] := {1, . . . , n} as follows

ε(i1, . . . , in) :=

{
sgn(i1, . . . , in), if (i1, . . . , in) ∈ Sn is a permutation,

0, otherwise.

For a map I : [M ]→ [n], where M is divisible by n, we denote

ε(I) := ε(I(1), . . . , I(n)) · ε(I(n+ 1), . . . , I(2n)) · . . . · ε(I(M − n+ 1), . . . , I(M)) ∈ {0,±1}.

Consider the following multidimensional generalizations of determinants for d-tensors (viewed

as functions cf. Sec. 2) X : [n]d → C

∆M,~π(X) :=
∑

J1,...,Jd : [M ]→[n]

ε(J1 ◦ π1) · · · ε(Jd ◦ πd)
M∏
i=1

X(J1(i), . . . , Jd(i)),(1)

where M is divisible by n and ~π = (π1, . . . , πd) ∈ (SM )d is a d-tuple of permutations from SM .

In [BGO+17, Prop. 3.10] it is shown that these functions span the space of SL(n)d-invariant

homogeneous degree M polynomials on d-tensors. For the minimal M = n degree, ∆n,~π(X) is

(up to a sign) Cayley’s first hyperdeterminant [Cay43], a simple generalization of determinants

for tensors (here ~π affect ∆n,~π(X) only by a sign; and ∆n,~π(X) is a nonzero function only for

even d).

The Levi-Civita n-tensor En : [n]n → C is the function given by En(i1, . . . , in) = ε(i1, . . . , in).

The Alon–Tarsi conjecture on Latin squares [AT92] can be reformulated via hyperdeterminants

as follows, see also Remark 15.

Conjecture 1 (Alon–Tarsi). For every n even, ∆n,~π(En) 6= 0.

In this note we prove the following Alon–Tarsi-type result.

Theorem 2. For every n, there exist M divisible by n and ~π ∈ (SM )n such that ∆M,~π(En) 6= 0.
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This result is equivalent to the statement that the Levi-Civita tensor En is semistable in the

sense of Geometric Invariant Theory, see Sec. 4. We prove it using Tao’s slice rank [Tao16] and

its connection with semistable tensors as developed in [BCC+17, BGO+17].

Note that the Alon–Tarsi conjecture is known to hold for specific values n = p ± 1 where

p is any prime [Dri97, Gly10]. The Alon–Tarsi conjecture also implies Rota’s basis conjecture

[HR94, Onn97], and we discuss a similar connection derived from Theorem 2 in Sec. 5.

2. Tensors

Let V = Cn. We consider tensors as elements of the space V ⊗d = V ⊗· · ·⊗V (d times). Each

tensor of V ⊗d can be represented in coordinates as∑
1≤i1,...,id≤n

T (i1, . . . , id) ei1 ⊗ · · · ⊗ eid ,

where T : [n]d → C which we call a d-tensor, and (ei) is the standard basis of V . We denote by

Td(n) := {T : [n]d → C} the set of d-tensors.

Let A1, . . . Ad ∈ T2(n) viewed as n×n matrices and X ∈ Td(n) be a d-tensor. The multilinear

product is defined as follows

(A1, . . . , Ad) ·X = Y ∈ Td(n),

where

Y (i1, . . . , id) =
∑

j1,...,jd∈[n]

A1(i1, j1) · · ·Ad(id, jd)X(j1, . . . , jd).

The multilinear product defines the natural GL(V )d action1 on Td(n), and simply expresses

change of bases of V for a tensor. Note that for matrices B1, . . . , Bd ∈ T2(n) we have

(A1B1, . . . , AdBd) ·X = (A1, . . . , Ad) · ((B1, . . . , Bd) ·X).

The tensor product of X ∈ Td(n), Y ∈ Td(m) is defined as T = X ⊗ Y ∈ Td(nm) given by

T (k1, . . . , kd) = X(i1, . . . , id) · Y (j1, . . . , jd), k` = i`(m− 1) + j`.

Alternatively, we can view the `-th coordinate of T as a pair (i`, j`) 7→ k` ordered lexicograph-

ically, for ` ∈ [d]. For X ∈ Td(n), the tensor X⊗k = X ⊗ · · · ⊗ X ∈ Td(nk) denotes the k-th

tensor power of k copies of X.

3. The slice rank

A nonzero d-tensor T ∈ Td(n) has slice rank 1 if it can be decomposed in a form

T (i1, . . . , id) = v(ik) · T1(i1, . . . , ik−1, ik+1, . . . , id),

for some k ∈ [d], a vector v ∈ V and a (d−1)-tensor T1 ∈ Td−1(n). The slice rank of T ∈ Td(n),

denoted by slice-rank(T ), is then the minimal r such that

T = T1 + . . .+ Tr,

where each summand Ti has slice rank 1. (Note that each Ti can be decomposed differently and

along different coordinates k.)

1We use the notation Gd := G× · · · ×G (d times) for a group G.
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For T ∈ Td(n) we have the inequality

slice-rank(T ) ≤ n,

since T can always be expressed as the sum of slice rank 1 tensors as follows

T (i1, . . . , id) =

n∑
`=1

δ(i1, `) · T (`, i2, . . . , id),

where δ is the Kronecker delta function.

The following lemma is useful for finding the slice rank of some sparse tensors.

Lemma 3 ([ST16]). Equip the set [n] with d total orderings ≤i for i ∈ [d], which define the

product partial order ≤ on [n]d. Let T ∈ Td(n) whose support Γ = {(i1, . . . , id) : T (i1, . . . , id) 6=
0} is an antichain w.r.t. ≤. Then

slice-rank(T ) = min
Γ=Γ1∪···∪Γd

|π1(Γ1)|+ . . .+ |πd(Γd)|,

where the minimum is over set partitions Γ = Γ1 ∪ · · · ∪ Γd and πi : [n]d → [n] is the projection

map on the i-th coordinate.

Remark 4. The slice rank was introduced by Tao in [Tao16] and studied in [ST16]. This notion

found many applications especially in additive combinatorics, see [Gro19] for a related survey.

Remark 5. For d = 2, the slice rank coincides with the usual matrix rank. For d ≥ 3, it

significantly differs from the more common tensor rank (e.g. [Lan12]) which can be way larger.

3.1. The slice rank of the Levi-Civita tensors. Now we find the slice rank of the Levi-Civita

n-tensor En ∈ Tn(n) and its k-th tensor power E⊗kn ∈ Tn(nk).

Lemma 6. We have: slice-rank(E⊗kn ) = nk is full for all k.

Proof. The support of E⊗kn ∈ Tn(nk) can be identified with the following set

Γ =
{

(i1, . . . , in) : i` = (i`,1, . . . , i`,k) ∈ [n]k for ` ∈ [n], and (i1,j , . . . , in,j) ∈ Sn for j ∈ [n]
}
.

Take the lexicographic ordering ≤` on i` ∈ [n]k for each ` ∈ [n], which define the product partial

order ≤ on Γ. Let us show that Γ is an antichain w.r.t. this partial order. Assume we have

(i1, . . . , in) ≤ (i′1, . . . , i
′
n) for elements of Γ, which means i` = (i`,1, . . . , i`,k) ≤` i′` = (i′`,1, . . . , i

′
`,k)

for all ` ∈ [n]. In particular, i`,1 ≤ i′`,1 for all ` ∈ [n] but both (i1,1, . . . , in,1), (i′1,1, . . . , i
′
n,1) ∈ Sn

are permutations which is only possible when (i1,1, . . . , in,1) = (i′1,1, . . . , i
′
n,1). Since ≤` are lexico-

graphic, we then have i`,2 ≤ i′`,2 for all ` ∈ [n] and by the same argument we get (i1,2, . . . , in,2) =

(i′1,2, . . . , i
′
n,2). Proceeding the same way we obtain that (i1,j , . . . , in,j) = (i′1,j , . . . , i

′
n,j) for all

j ∈ [n] and hence (i1, . . . , in) = (i′1, . . . , i
′
n) which shows that Γ is indeed an antichain.

Let ρ : [n]k → [n]k be the (bijective) cyclic shift map given by

ρ : (i1, . . . , ik) 7−→ (i′1, . . . , i
′
k) = (i1 + 1, . . . , ik + 1) mod n.

Consider the following subset of Γ

S =
{

(i, ρ i, . . . , ρn−1i) : i ∈ [n]k
}
⊂ Γ.
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Take any partition Γ = Γ1 ∪ · · · ∪ Γn. Note that for each j ∈ [n] we have

|πj(Γj)| ≥ |πj(Γj ∩ S)| ≥ |Γj ∩ S|

since the elements of S differ in the j-th coordinate. Hence we have

|π1(Γ1)|+ . . .+ |πn(Γn)| ≥ |Γ1 ∩ S|+ . . .+ |Γn ∩ S| = |S| = nk,

which by Lemma 3 implies that slice-rank(E⊗kn ) ≥ nk. On the other hand, we know that

slice-rank(E⊗kn ) ≤ nk and hence the equality follows. �

Remark 7. It was noticed in [Gow21] that slice-rank(E3) = 3.

4. Semistable tensors

The notion of semistable tensors comes from Geometric Invariant Theory [MFK94]. A poly-

nomial P (X) is SL(n)d-invariant on Td(n) if P (g ·X) = P (X) for all g ∈ SL(n)d and X ∈ Td(n).

A tensor X ∈ Td(n) is called semistable (for the action of SL(n)d) if P (X) 6= 0 for some noncon-

stant SL(n)d-invariant homogeneous polynomial P . The following important characterization of

semistable tensors shows their connection with the slice rank.

Theorem 8 ([BGO+17, Cor. 6.5]). A tensor X ∈ Td(n) is semistable iff slice-rank(X⊗k) = nk

is full for all k.

Lemma 6 with this Theorem give the following result.

Theorem 9. The Levi-Civita n-tensor En is semistable.

To show the equivalence of Theorem 9 with Theorem 2, we use the following concrete descrip-

tion of SL-invariant generating polynomials.

Lemma 10 ([BGO+17, Prop. 3.10], cf. [BFG+19, Ex. 7.18]). The space of SL(n)d-invariant

homogeneous degree M polynomials on Td(n) is nonzero only if M is divisible by n, in which case

it is spanned by the polynomials {∆M,~π} (defined in eq. (1)) indexed by d-tuples of permutations

~π = (π1, . . . , πd) ∈ (SM )d.

Corollary 11. Let X ∈ Td(n) be semistable. Then ∆M,~π(X) 6= 0 for some M divisible by n

and permutations ~π ∈ (SM )d.

Remark 12. The connection of slice rank with semistable tensors was first established in [BCC+17],

where it was shown that slice-rank(X) < n implies X is unstable (i.e. not semistable), and if X

is unstable then slice-rank(X⊗k) < nk for some k. In [BCC+17] these results are given for d = 3

and for any d the statements are in [BGO+17]; the proofs use the Hilbert–Mumford criterion.

Remark 13. The formula (1) is given in exactly this form in [BFG+19, Ex. 7.18], and in

[BGO+17, Prop. 3.10] it is stated in a slightly different form.

Remark 14. The degree M can be bounded above using a result from [Der01], see [BGO+17,

Lemma 7.11] for a precise statement, which gives M ≤ ddn2−dnd.
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Remark 15. Let us see how to get the original formulation of the Alon–Tarsi conjecture via

Latin squares [AT92]. Let ~π be the n-tuple of identity permutations from Sn. We then have

∆n,~π(En) =
∑

J1,...,Jn:[n]→[n]

ε(J1) · · · ε(Jn)
n∏
i=1

ε(J1(i), . . . , Jn(i)).

The maps J1, . . . , Jn corresponding to nonzero terms in this sum are in one-to-one correspon-

dence with the n×n Latin squares (i.e. matrices whose every row and column is a permutation

from Sn) formed by the rows J1, . . . , Jn. The nonzero terms define the signs for these Latin

squares. Then the conjecture states that for each even n, the number of Latin squares with the

odd sign is not equal to the number of Latin squares with the even sign, i.e. ∆n,~π(En) 6= 0. A

similar formulation via Latin-type n×M matrices can be given for our result ∆M,~π(En) 6= 0.

Remark 16. It can be shown that the results in [Kum15, KL15] combined with the eventual

surjectivity of the Hadamard–Howe map [Bri93, Bri97] lead to similar sums over Latin-type

matrices with column signs.

5. A version of Rota’s basis conjecture

As an application we show the following asymptotic version of Rota’s basis conjecture.

Theorem 17. Let B1, . . . , Bn be n bases of V = Cn. There is ` ≥ 1 and n× `n matrix A such

that:

• in the i-th row of A each element of Bi appears ` times, for i = 1, . . . , n

• every column of A forms a basis of V .2

Rota’s basis conjecture [HR94, Rot98] states that this holds for ` = 1 thus presenting the

problem as a saturation-type3 question.

5.1. Relative invariance. We use the polynomials ∆M,~π as relative GL-invariants which is

well known.

Lemma 18. Let X ∈ Td(n) and A1, . . . , Ad ∈ GL(n). We have

∆M,~π((A1, . . . , Ad) ·X) = ∆M,~π(X) · det(A1)M/n · · · det(Ad)
M/n.

Proof. It is enough to check the identity for one matrix A = A1. Write A = BD for B ∈ SL(n)

and D = diag(det(A), 1, . . . , 1). Then as ∆M,~π is SL(n)d-invariant, we get

∆M,~π((BD, I, . . . , I) ·X) = ∆M,~π((B, I, . . . , I) · ((D, I, . . . , I) ·X)) = ∆M,~π((D, I, . . . , I) ·X).

Let Y = (D, I, . . . , I) ·X. We have

Y (i1, . . . , id) =
∑
j

D(i1, j)X(j, i2, . . . , id) =

{
det(A) ·X(i1, . . . , id), if i1 = 1,

X(i1, . . . , id), otherwise.

2To be precise, each entry of A is a vector in V . Here V can be any n-dimensional vector space over a field of

characteristic 0.
3By analogy with algebraic notions of saturation for monoids or ideals.
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From the formula (1) we can see that each nonzero term
∏d
k=1 ε(Jk◦πk)

∏M
i=1X(J1(i), . . . , Jd(i))

of ∆M,~π(X) has exactly M/n variables X(1, ∗ . . . , ∗). Hence, ∆M,~π(Y ) = ∆M,~π(X) · det(A)M/n

as needed. �

5.2. Determinantal tensors. For a matrix A denote by A[i] the i-th column vector of A. For

matrices A1, . . . , An ∈ GL(n) define the determinantal n-tensor D = D(A1, . . . , An) ∈ Tn(n)

given by

D(i1, . . . , in) := det(A1[i1], . . . , An[in]), ∀i1, . . . , in ∈ [n].

Lemma 19. We have:

(i) Let A1, . . . , An, B1, . . . , Bn ∈ GL(n). Then

D(A1B1, . . . , AnBn) = (BT
1 , . . . , B

T
n ) · D(A1, . . . , An).

(ii) D(In, . . . , In) = En, where In is the identity n× n matrix.

Proof. (i) It is enough to check the identity for one matrix B1 = B. By definition and multilin-

earity of determinants we have

D(A1B,A2, . . . , An)(i1, . . . , in) = det(A1B[i1], A2[i2], . . . , An[in])

= det

 n∑
j=1

A1[j] ·B(j, i1), A2[i2], . . . , An[in]


=

n∑
j=1

B(j, i1) · det(A1[j], A2[i2], . . . , An[in])

= (BT , In, . . . , In) · D(A1, . . . , An)(i1, . . . , in).

(ii) We have

D(In, . . . , In)(i1, . . . , in) = det(ei1 , . . . , ein) = ε(i1, . . . , in)

and the equality follows. �

Corollary 20. Let B1, . . . , Bn ∈ GL(n). We have

D(B1, . . . , Bn) = (BT
1 , . . . , B

T
n ) · D(In, . . . , In) = (BT

1 , . . . , B
T
n ) · En.

Remark 21. Determinantal tensors are implicitly used in [Onn97]; an explicit formulation ap-

pears in [AL15].

Proof of Theorem 17. We have B1, . . . , Bn ∈ GL(n) whose elements are given by column

vectors. Consider the determinantal tensor

D = D(B1, . . . , Bn) = (BT
1 , . . . , B

T
n ) · En.

Since En is semistable, there exist M = `n and ~π ∈ (SM )n such that ∆M,~π(En) 6= 0 (Cor. 11).

By Lemmas 18 and 19 we have

∆M,~π(D) = ∆M,~π(En) · det(B1)` · · · det(Bn)` 6= 0.
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On the other hand, let us check the expansion of this polynomial, which is given by

∆M,~π(D) =
∑

J1,...,Jn : [M ]→[n]

n∏
k=1

ε(Jk ◦ πk)
M∏
i=1

D(J1(i), . . . , Jn(i))

=
∑

J1,...,Jn : [M ]→[n]

n∏
k=1

ε(Jk ◦ πk)
M∏
i=1

det(B1[J1(i)], . . . , Bn[Jn(i)]).

Since ∆M,~π(D) 6= 0, at least one term in this expansion is also nonzero, which will give a desired

arrangement. Indeed, if

n∏
k=1

ε(Jk ◦ πk)
M∏
i=1

det(B1[J1(i)], . . . , Bn[Jn(i)]) 6= 0

then we can arrange the columns of B1, . . . , Bn into an n × M matrix A w.r.t. the maps

J1, . . . , Jn : [M ]→ [n] such that the i-th column of A has the entries B1[J1(i)], . . . , Bn[Jn(i)] of

the corresponding columns of B1, . . . , Bn. Since det(B1[J1(i)], . . . , Bn[Jn(i)]) 6= 0 they are all

bases as needed. The rows of A also satisfy the needed property, i.e. each entry appears exactly

` times, since ε(Jk ◦ πk) 6= 0 for all k = 1, . . . , n which is clear from the definition of the sign

ε(J). �

Remark 22. In the case M = n, this is the method of [Onn97] showing how the Alon–Tarsi

conjecture implies Rota’s basis conjecture.

Remark 23. From Remark 14, we can see that an upper bound on the multiplicity ` = M/n is

large, it gives ` ≤ nn3
.

Remark 24. It can be shown that Theorem 17 is equivalent to a fractional version of Rota’s

basis conjecture, which holds for matroids and follows from a more general result in [AB06,

Thm. 10.4] on fractional coloring.

Note: This paper supersedes author’s preprint [Yel21].
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