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Q. How to generalize integer partitions in higher
dimensions?

A: Easy



Usual integer partitions (1-d) (A;)

Plane partitions (2-d) (7237

Solid partitions (3-d) (7Tik )



Integer partitions (1-d)

A=A12>--2>2N) A=A

A =(5,3,2) Diagram:




Plane partitions (2-d)

T = (7tj;) TUj 2 TUit1jy U j+1 Il = 2_

T — Diagram:



d-dimensional partitions

N-tensors (71;,...,) ity 2 Ty TOF B, 2 Jrgws sy lig 2 Jd

volume |7t| = ) .

3-d partition:




Enumeration and generating functions



p4(n) number of d-dimensional partitions of volume n
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1-d review

Theorem. (Euler)

= 1
y)=3 tN=3 pmt"=1+er2e0 43045+ = [ [ 7=
A n

n=1

Dedekind eta function n(z) = t¥/?*/y(t) (t = e?™?) is a modular
form, i.e. has SLjy translation n(z + 1) = t/?*n(z) and

n(—1/z) = +/z/i -n(z).

(Classics) y(t) is a solution to algebraic differential equation



1-d some refs

Home > The Ramanujan Journal > Article

THE THEORY
OF PARTITIONS

Partition bijections, a survey

Published: August 2006
Volume 12, pages 5—75,(2006) Cite this article

George E. Andrews

Cambridge Mathematical Library
Igor Pak A




2-d review
Theorem. (MacMahon 1890)

S 8 0 0 1

7t plane partitions

- Proofuses RSK, Schur functions
- There are many known refinements of this generating function

a b
Z F H H H 1 — pitjtk—2

7 in [a] X [b] X [c] =1 =1 k1



2-d some refs

e , PLANE PARTITIONS IN THE WORK OF RICHARD STANLEY AND
Cambridge Studies in Advanced Mathematics 62 HIS SCHOOL

C. KRATTENTHALER

<
Enumerative
combinatori(s ABSTRACT. These notes provide a survey of the theory of plane partitions, seen through
Yolume 2

the glasses of the work of Richard Stanley and his school.

1. INTRODUCTION

Plane partitions were introduced to (combinatorial) mathematics by Major Percy Ale-
xander MacMahon [71] around 1900. What he had in mind was a planar analogue of a(n
integer) partition.”
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Arch-enemy?

AT =
Not MacMahon Not Ramanujan
-Partitions can't be done! -Then he better start counting very high
Especially by the likes of you -242,1549090
-Sqrt(58639) -l can do p(200)

-Combinatorics - glorified dice throwing
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The hero

MacMahon’'s conjecture (1916).
The generating function for d-dim partitions is

Z tlﬂl — Z pd(n)t” = H 1(n+d—2)

7t d-dim partitions

Note: true ford =1,2
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The hero

MacMahon’'s conjecture (1916).
The generating function for d-dim partitions is

i 1
i n_?
Z L o pd(n)t o i (n+d—2)
7t d-dim partitions n n=1 (1 i ) d—1
Note: true for d = 1.2 P. A. MacMahon: “ We have evidently, potentially, the
. — - A

complete solution of the problem of three-dimensional partition

... This will form the subject of Part VIl of this Memoir.”

Theorem. (Atkin-Bratley-Macdonald-McKay 1967)
Conjecture is false for d > 3 and n > 6.



"Testimonies"
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was known until 1969.”
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"Testimonies"

D. Knuth ('70) “The problem of enumerating three-dimensional (”solid”) partitions
has never been resolved, ... and Part VIl of MacMahon's classic Memoir never
appeared. No constructive proof of MacMahon's formula for the two-dimensional case

was known until 1969.”

R Stanley ('72): “for d > 3 almost nothing is known, and Prop. 11.1 casts only a

faint glimmer of light on a vast darkness”

R. Stanley ('99, EC2): “ It now seems obvious to define d-dimensional partitions for
any d > 1. However, almost nothing significant is known for d > 3. ”




EC Enumerative Combinatorics and Applications ECA 1 (2021) Article #S3I1

ecajournal.haifa.ac.il

Interview with Richard P. Stanley

Toufik Mansour

Mansour: Were there specific problems that
made you first interested in combinatorics?

Stanley: Perhaps the next such problem was
the enumeration of solid (3-dimensional parti-
tions), generalizing MacMahon’s famous enu-
meration of plane partitions. I never made sig-
nificant progress (and most likely the problem
is intractable), but it did lead me to the theory
of P-partitions, the subject of my Ph.D. thesis.
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Q (or hope): Maybe MacMahon wasn't that wrong?

A: Maybe



A 'corrected’ version

Theorem. (Amanov-Y. 2020) There is a statistic | - |c, on d-dim
partitions called corner-hook volume such that

Tk - ~ 1
Z tl ;i e H (n+d—2)

7t d-dim partitions n=1 (1 el




Corner-hook volume statistic
Diagram D(m) € Z9*! of d-dim partition 7.
+k +k

B i g ey

J i
3 Corners: .-

Cor(m) :={i € Z9™ :i € D(m), i+ e, & D(m) for all £ € [d]}.

17T oy = > (h+...+ig—d+1)
(1yeeeyigy1)ECor(m) '

17ty = |7t for d =1 Cor(m)
|7t cp # |mt| for d > 2

(i,jy k) € D(m) : (i +1,j, k), (i,j + 1, k) & D(m)}

{
{(1,1,4),(1,3,1),(1,3,2),(2,2,1),(2,2,2),(2,2,3)}

Mgy =(1+1—-1)+(14+3-1)+(1+3-1)+(24+2—-1)+(24+2—-1)+(2+2—1) = 16.



More generating functions [AY '20]

Theorem 5.2. Let p C Z¢ be a fixed shape of a d-dimensional partition. We have the following
generating functions:

1

Z (eor(m) g |xlen — l_[ (1 _tqil+...+id—d+1)_ ’

rneP(d) sh(m)Cp (i1,-.-,id) €EP

Corollary 5.3 (Boxed version). We have

Z cor(:r) Il l_[ l_[ (1 . zLqzl+ Hig— d+1)

HEP(TI] aaaaa nd,oo) ll_l Id

1

Corollary 5.4 (Full generating function). We have

Z 1001 (m) g7 len — n(l —tq")" (A

—C) n>1



Proofs via "corner projection” bijection

Let M (9 be the set of d-dimensional N-hypermatrices and P (%) be the set of d-dimensional partitions.
Consider the corner projection map ¢ : P9 — M4 given by 7 + (a;), where

ai = [{ig1 : (i,igs1) € Cor(m)}|, ieZ<.

189
(a‘f")_(o 3 o)

- Itsinverse can be viewed as directed last passage percolation map
- Alsorelatedto Stanley's transfer map between poset and order polytopes
- Ford=2in[Y.19] with applications coming from dual Grothendieck polynomials

|
-
k



3d Grothendieck polynomials [AY '20]

8p (x;y;2) := Z 1_[ XiYjlk  &p(X;y;z) indexed by plane partitions p.
mt:shy (m)=p (i,j,k,£)€Cor(m)
solid partitions © € P(ny,ny,n3,ng).

e gp(x;y;2)=]_[]_[]_[1 —x;y2) "

p€P (ny,n3,:) i=1 j=1 k=1

+1
8 [n2]x[n3]x[ns] (1”1 ) = |P(n19 na, n3, n4)|1
the number of solid partitions inside the box [n1] X [ny] X [n3] X [n4]

- Quasisymmetricin x
- Generalize symmetric (2-d) dual Grothendieck polynomials of [Lam-Pylyavskyy '07]
- Determine probability for directed 3d last passage percolation with geom weights [AY '20]
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log p1(n) ~ cin'’?, c1 = 20(2)Y? (Hardy-Ramanujan)

log po(n) ~ can?/3, c, = 3/2%/3¢(3)'/3 (Wright, '31)
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Asymptotics

log p1(n) ~ cin'’?, c1 = 20(2)Y? (Hardy-Ramanujan)

log po(n) ~ can?/3, c, = 3/2%/3¢(3)'/3 (Wright, '31)

Q: Asymptotics of py(n)?
Open problem. Prove limit exists and find it

1
i 108 Pd(n)
n—oo pd/(d+1)




Asymptotics of MacMahon's numbers

MacMahon's numbers my(n):

Z md H n+d 2)

n=1 ]-_tn &

d+1
log my4(n) "“Yd”d/(dﬂ)a Yd — dd/(d+1) C(d 1)1/(d+1)




Simulations by physicists
Conjecture 1. (Mustonen—Rajesh, J. Phys. A '03)

log p3(n) ~ log m3(n) ~ 1.78..n%%
Conjecture 2. (Balakrishnan-Govindarajan-Prabhakar, J. Phys. A '12)

log pg(n) ~ log my(n)



Simulations by physicists
Conjecture 1. (Mustonen—Rajesh, J. Phys. A '03)

log p3(n) ~ log m3(n) ~ 1.78..n%%
Conjecture 2. (Balakrishnan-Govindarajan-Prabhakar, J. Phys. A '12)
log pg(n) ~ log mg(n)
Simulation 3. (Destainville-Govindarajan, J. Stat. Phys. '15)

log p3(n) ~ 1.82..n%%



What's known
Theorem. (Bhatia—Prasad—Arora, '97) log pg(n) = @(n9/ld+1))
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Theorem. (Y. '23)

(d+1)
(d + 1)1/(d+1

log pq(n) log (d+1)
7 log2(1—o(1)) < 37 (d+1] <vi(d+1)

log p4(n)

d/(d+1) < (d—l—l)C(d_|_1)1/(d+1)_|_o(1)

) (log2 + €4) <
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What'S knOwn Q: Explicit lower/upper bounds?
Theorem. (Bhatia—Prasad—Arora, '97) log py(n) = ©(n9/(d+1))
Theorem. (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23)

(d+1) log pq(n) log (d+1)
4+ DU log2(1—o0(1)) < 3/ (d+1) <vi(d+1)
Theorem. (Y. '23) - Lower bound
(d . 1) log Pd(n) #partitions pyramid

< (d+1)¢(d +1)Y14+1) 4 o(1) - Upper bound via
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(log2 + €4) <
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What'S knOwn Q: Explicit lower/upper bounds?
Theorem. (Bhatia—Prasad—Arora, '97) log py(n) = ©(n9/(d+1))
Theorem. (Dai-Prymak-Shadrin-Temlyakov-Tikhonov, '23)

(d+1)
(d e 1)1/(d+1

Theorem. (Y. '23)

(d+ 1)
(d + 1)1/(d+1)

Cor. Lower bound implies Conjecture 2 is false for d > 7.

log p4(n)
nd/(d+1)

- log2(1—o0(1)) < i d I

- Lower bound
#partitions pyramid

< (d+1)¢(d +1)Y14+1) 4 o(1) - Upper bound via

corner-hook vol

log p4(n)

(log2 + €4) < d/(d+1)

Problem. Showthe same for d =3,4,5,6

log py(n)

— Ty < 4200

Theorem. (Oganesyan, '23) For sufficiently large n,



Limit shapes of random partitions

i 1

d = 1 Vershik d =2 quunkov—Reshetikhin d> 3777

d = 3 Destainville—=Govindarajan simulation



Boxed d-dimensional partitions



Let P4(n) be the number of d-dimensional partitions with diagram

inside the box [n]9+1
2n L i+j+k—1
P —— P ——
1(n) (n)’ 2(n) dekI:1i+j+k—2

Theorem. (Moshkowitz—Shapira, 2014)

2 < log, Py(n) <9

3vVd+1 nd .
Problem. Show as n — oo limit exists and find it.
— Related to Ramsey theory and the number of poset antichains

— Some more and d — oo studied in [Pohoata—Zaharov '21,
Park—Sarantis—Tetali '23, Falgas-Ravry—Raty-Tomon '23]



Partitions inside pyramid

Let Ay(n) be the number of d-dimensional partitions with diagram
inside the simplex x1 +...+xg11 < n

Theorem. (Y. '23)

1 < log, Ag(n) <9

N G

Problem. Show as n — oo limit exists and find it.



Complementary boxed partitions

Another recent explicit generating function
[F. Schreirer-Aigner 2023]

Theorem 1.1. Letx = (z1,...,Z411), n = (N1,...,Nge1) € Ni*(')l and denote by FCP(n)

the set of fully complementary partitions inside a (2n1,...,2ng4,1)-box. Then
d+1 d+1 ; .
[Tz > (7" +des)— > az;
‘ i=1 1<4,j<d+1

=1
Y |FCP(n)|x" = P (1.4)

nENd+1 (1 = >, wz) [1(1—=)

=1 1=1



Connections in some other areas

Algebra, geometry, physics
Commutative algebra, Artinian monomial ideals

Enumerative geometry, Donaldson-Thomas invariants (Euler
characteristics of Hilbert schemes)

Counting black holes in string theory [Gopakumar-Vafa]



That's it?
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